PLOS ONE

RESEARCH ARTICLE

Incidence and characterization of acute pulmonary embolism in patients with SARS-CoV-2 pneumonia: A multicenter Italian experience

Marco Loffi¹*, Valentina Regazzoni¹, Marco Toselli², Alberto Cereda², Anna Palmisano^{3,4}, Davide Vignale^{3,4}, Francesco Moroni⁵, Gianluca Pontone⁶, Daniele Andreini⁶, Elisabetta Maria Mancini⁶, Alberto Monello⁷, Gianmarco Iannopollo⁸, Gianni Casella⁸, Francesco Monetti⁸, Lorenzo Monti⁹, Giuseppe Ferrillo⁹, Gaetano Liccardo⁹, Elisabetta Tonet¹⁰, Ottavio Zucchetti¹⁰, Alberto Cossu¹⁰, Marco Dugo¹⁰, Gianluigi Patelli¹¹, Pietro Sergio¹², Antonio Esposito^{3,4}, Antonio Colombo², Francesco Giannini², Raffaele Piccolo¹³, Gian Battista Danzi¹

Background

- Several studies reported a high incidence of pulmonary embolism (PE) among patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
- Moreover, abnormal coagulation parameters have been described among patients hospitalized with severe COVID-19, including elevated Ddimer and fibrin degradation products (FDP) levels, with a strong correlation with inhospital mortality.
- However, a detailed clinical characterization of patients with PE, the Ddimer's role in predicting embolism, the nature of PE (real embolism or local inflammation process) and the prognostic value remains poorly described.

AIM of the study

- To report the rate and the distribution of PE in patients with SARS-CoV-2 infection admitted in seven hospitals located in Northern Italy during the first outbreak of the disease.
- To describe the risk factors, clinical characteristics and in-hospital outcome of this population.

Methods

- Retrospective, multicenter, observational, cohort study.
- The cohort included 333 consecutive patients with a confirmed diagnosis of pneumonia by SARS-CoV-2 admitted to seven hospitals located in Northern Italy between February 22 to May 15 2020, who underwent computed tomography pulmonary angiography (CTPA) at admission.
- Information about medical history, presence of major predisposing risk factors for venous thromboembolism, complete blood chemistry tests, and clinical outcomes were collected.

Results (I)

- Among 333 patients with laboratory confirmed SARS-CoV-2 pneumonia and undergoing CTPA, PE was detected in 109 (33%) cases.
- Clinical characteristics of the two groups were similar, although patients with PE had a higher heart rate (HR) and lower systolic blood pressure (SBP) at admission compared with those without PE.
- No main comorbidities were associated with a higher risk of PE.
- Traditional risk factors for PE were not associated with PE occurrence.
- Deep vein thrombosis (DVT) was detected in only 15 (29% of 51) patients at compression ultrasonography, which was performed in 51 (47%) patients with PE.
- Medical therapy before admission, including anticoagulant/antithrombotic treatments, were not different in the two groups.

Table 2. Major predisposing risk factors for PE.					
	Total (n = 333)	PE (n = 109)	Non-PE (n = 224)	p value	
Hospitalization (last 3 months)	0	0	0	//	
ACS (last 3 months)	0	0	0	//	
Previous DVT/PE	6 (2%)	3 (3%)	3 (1%)	0.4	
Active Cancer	33 (10%)	8 (7%)	25 (11%)	0.27	
Oral contraceptive therapy	1 (0.3%)	0	1 (0.5%)	1	
Autoimmune diseases	11 (3%)	3 (3%)	8 (4%)	1	

Data are n (%).

PE: pulmonary embolism; ACS: acute coronary syndrome; DVT: deep vein thrombosis.

Results (II)

- No PE patients presented with hemodynamic instability at the time of the diagnosis.
- No PE patient had a sPESI score higher than 4.
- All patients with PE diagnosis at CTPA received a full anticoagulant dose of enoxaparin (100 IU/Kg twice daily).
- No differences were noted between the two study groups about need for non-invasive ventilation with C-PAP (p = 0,57) and ICU admission (p = 0,39). In-hospital death occurred in 29 (27%) patients in the PE-group and in 47 (21%) patients in the non-PE group (p = 0.25).
- Both baseline and peak value of D-dimer were higher in PE-group compared to no-PE group.
- High-sensitivity cardiac troponin I levels were low and not different between the two groups.
- Patients with PE presented higher leucocyte level.

	Normal range	Total (n = 333)	PE (n = 109)	Non-PE (n = 224)	p value
D-dimer (µg/ml) Admission value	0-0.5	2.1 (0.6-4.7)	3.6 (0.9–14.7)	1.3 (0.6–3.3)	0.001
D-dimer (µg/ml) Peak value	0-0.5	3.8 (2.6-9.9)	5.7 (3.3-49)	3.3 (1.9–9.6)	0.001
Hs-TnI (ng/L) Admission value	0-34	14.7 (8.9–107.8)	13.9 (6-238)	16.7 (8.9–93)	0.69
Hs-TnI (ng/L) Peak value	0-34	24.8 (12.8-108.9)	39 (14.6-238)	20.1 (11.2–107.7)	0.85
CRP (mg/L) Admission value	0-5	65.5 (22.8–150)	49 (23.4-220)	71 (21–140)	0.34
CRP (mg/L) Peak value	0-5	113.5 (48.3–257.7)	99 (33.3–270)	117 (55–210)	0.12
WBC (/mm ³)	3900-10600	7775 (5115–12837)	14000 (5950-21800)	7340 (4740-11700)	0.001
Hb (g/dL)	14-18	12.5 (10.9–14.2)	13.9 (12.1–16)	12.2 (10.8–14)	0.015
PTL (*10 ³ /mm ³)	150-400	230 (170.7-307.5)	232 (142-330)	228 (175-273)	0.84
aPTT (seconds)	25-36	30 (28.2–33.2)	30 (27.7-31.8)	30 (28.3-34)	0.054
INR	0.8-1.2	1.15 (1.08-1.30)	1.33 (1.15–1.53)	1.14 (1.06–1.23)	0.64
LDH (U/L)	<248	346 (273-448)	293 (227-476)	354 (289-447)	0.25
Creatinine (mg/dL)	0.7-1.18	1.07 (0.79–1.33)	1.09 (0.80-1.41)	1.07 (0.76-1.31)	0.94
EGFR (ml/min/1.73mq)	> 60	74.7 (50.3-94.5)	73.7 (48.1–96)	75.7 (51.1–92)	0.48
IL-6 (ng/L)	95-100	56.5 (21.7-120)	49 (16-126)	58 (24-118)	0.94

Table 4. Laboratory data.

Data are median (IQR) or n (%).PE: pulmonary embolism; hs-TnI: high sensitive troponin I; CRP: C-reactive protein; WBC: white blood cell count; PTL: platelets; ALT: alanine aminotransferase; AST: aspartate transaminase; aPTT: activated partial thromboplastin time; INR: international normalized ratio; LDH: lactate dehydrogenase; EGFR: estimated glomerular filtration rate; Pa02: arterial oxygen partial pressure; S02: oxygen saturation; Fi02:fraction of inspired oxygen. Bold numbers indicate significant p-value<0.05.

Results (III)

- Subsegmental and segmental filling defects were observed in in 31 (29%) and 50 (46%) patients respectively whereas lobar thrombi and central PE were found in 20 (18%) and 8 (7%) cases.
- Thrombi were bilaterally distributed in 54 (49%) patients.
- Pneumonia severity was not different between the two groups.
- Among PE group, 77 (71%) of the patients CTPA showed PE mainly located in lung consolidation areas.

Table 5. Entity of	f pulmonary	involvement.
--------------------	-------------	--------------

	Total (n = 333)	PE (n = 109)	Non-PE (n = 224)	р
Pulmonary involvement				
0%	37 (11%)	12 (11%)	25 (11%)	0.97
< 25%	82 (25%)	29 (27%)	53 (24%)	0.6
25-50%	78 (23%)	29 (27%)	49 (22%)	0.34
50-75%	82 (25%)	23 (21%)	59 (26%)	0.3
> 75%	54 (16%)	16 (14%)	38 (17%)	0.6

Data are n (%).

PE: pulmonary embolism.

Conclusions

- These results underline the close link between COVID-19 and prothrombotic diathesis.
- PE occurres in among 1/3 of patients with SARS-CoV-2 pneumonia but it does not worsen the prognosis of the disease.
- Local inflammation might play a relevant role in the pathobiological mechanisms of PE in the setting of SARS-CoV-2 pneumonia since the predominant localization of thromboses (71% of cases) was in the correspondence of the consolidation areas of the pulmonary parenchyma.
- Patients on chronic anticoagulation therapy, and even those who took prophylactic therapy with enoxaparin during hospitalization, were not protected from the occurrence of PE.
- Based on the results of the study, a risk-adapted approach to escalating the dose of anticoagulation should be considered after assessing the individual thrombotic and bleeding risk in COVID-19 patients.
- Further prospective investigation are warranted to better clarify this aspect.