
Metanalisi di confronto tra terapia antiaggregante e anticoagulanti orali diretti dopo chiusura percutanea dell'auricola sinistra

Background

- Percutaneous left atrial appendage closure (LAAC) is currently an alternative treatment in patients with non-valvular atrial fibrillation who are not candidates for long-term oral anticoagulation.
- The typical devices used are either a Watchman (Boston Scientific, Marlborough, MA), Amplatzer Cardiac Plug (St. Jude Medical, Minneapolis, MN), or Amplatzer Amulet (St. Jude Medical, Minneapolis, MN).
- The rate of device-related thrombus (DRT) has a reported onset of 30 to 90 days after the procedure.
- Therefore, medical management is warranted to decrease this risk

Clinical situation and therapeutic concept	Consensus statement	Symbol	References
Acetylsalicylic acid 75-325 mg/day for the procedure and then continued long term (load 300-500 mg prior to procedure if not previously on acetylsalicylic acid)	"Should do this"	•	108,114,140,173
Anticoagulation, using unfractionated heparin, is recommended during the implantation procedure prior to or immediately after TSP, aiming for an activated clotting time of >250 s	"Should do this"	•	106,165
After WATCHMAN implantation, warfarin (INR 2-3) should be given for 45 days, followed by clopidogrel for 6 months after the procedure in low bleeding risk group of patients, while in high bleeding risk group OAC should not be applied	"Should do this"	•	106,108
NOAC is a possible alternative to warfarin after WATCHMAN implantation	"May do this"		157,166–168
After WATCHMAN implantation in patients not suitable for oral anticoagulation, DAPT including clopidogrel 75 mg/day for 1 to 6 months after the procedure (load 300-600 mg prior to procedure if not previously on clopidogrel)	"May do this"		106,108,174
After AMPLATZER Cardiac Plug or Amulet implantation, DAPT including clopidogrel 75 mg/ day for 1 to 6 months after the procedure (load 300-600 mg prior to procedure if not previously on clopidogrel)	"May do this"		115,173
Other options that may be considered on a case-by-case basis include a single antiplatelet therapy (acetylsalicylic acid or clopidogrel) for short periods of time, as long as approved by a team consensus	"May do this"		175

Coagulation system activation post LAAC

0,55

0,5

0,45

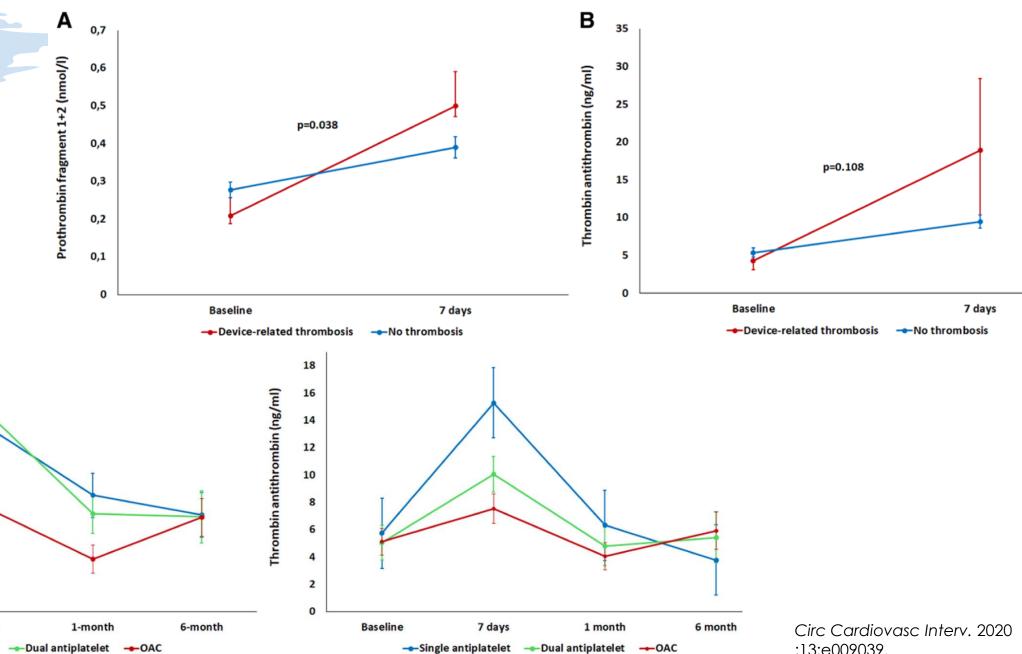
0,4

0,35

0,3

0,25

0,2


0,15

Baseline

7 days

--- Single antiplatelet

Prothrombin fragment 1+2 (nmol/l)

;13:e009039.

Meta-Analysis Comparing Antiplatelet Therapy Versus Direct Oral Anticoagulation in Percutaneous Left Atrial Appendage Closure

Rohan Madhu Prasad DO ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\triangle}{\sim}$, Abdullah Al-abcha MD ^a, Yasser Radwan MD ^a, Shaurya Srivastava DO ^a, Zulfiqar Qutrio Baloch MD ^b, Mahmoud Elsayed MD ^c, Supratik Rayamajhi MD ^a, George S. Abela MD, MS ^b

- ^a Department of Internal Medicine, Michigan State University, East Lansing, Michigan
- ^b Department of Cardiology, Michigan State University, East Lansing, Michigan
- ^c Department of Cardiology, Allegheny General Hospital, Pittsburgh, Pennsylvania

Received 3 May 2021, Available online 27 June 2021.

Methods

- The PubMed, EMBASE, and COCHRANE databases were searched for relevant articles published from inception to May 2, 2021.
- Included all randomized controlled studies that compared APT vs DOACs in patients with LAAC.
- The primary outcome was stroke and the secondary outcomes were major bleeding, DRT, and all-cause mortality.
- Fifteen RCTs were included with a total of 1,946 patients.

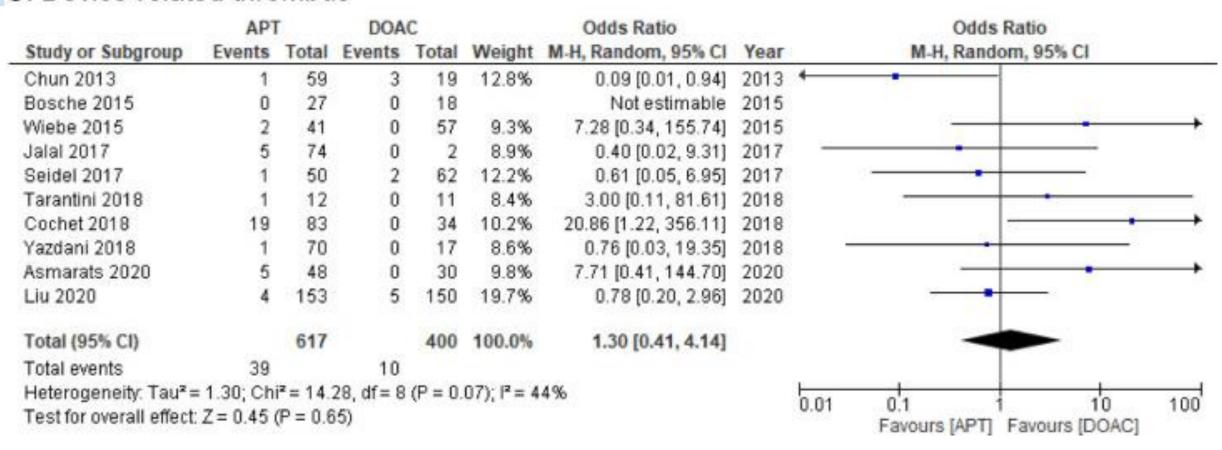
Results

- The rate of stroke was numerically lower in the DOACs arm when compared to the APT arm, but this difference did not reach statistical significance (APT 2.2% vs DOAC 1.0%, p = 0.26).
- Major bleeding: APT 5.27% vs DOAC 3.53%, p = 0.16.
- DRT: APT 6.32% vs DOAC 2.5%, p = 0.65.
- All-cause mortality: 12.97% vs 6.33%, p = 0.23.
- Sensitivity analysis showed that heterogeneity across the trials was low-moderate ($I^2 = 0\%$ to 53%).

Stroke

A. Stroke

	APT DOAC			C		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI			
Wiebe 2015	1	41	. 1	57	6.5%	1.40 [0.09, 23.05]	2015	5			
Bosche 2015	0	27	0	18		Not estimable	2015	5			
Wolfrum 2016	0	150	1	19	21.0%	0.04 [0.00, 1.04]	2016	6 +			
Budts 2016	3	119	0	6	7.3%	0.39 [0.02, 8.39]	2016	6			
Kim 2016	3	35	0	61	2.6%	13.25 [0.66, 264.34]	2016	6			
Seidel 2017	0	50	0	62		Not estimable	2017	7			
Nielsen-Kudsk 2017	2	141	0	10	7.2%	0.38 [0.02, 8.36]	2017	7			
Jalal 2017	1	74	0	2	7.5%	0.10 [0.00, 3.18]	2017	7 + -			
Lim 2017	5	19	0	16	3.1%	12.52 [0.64, 246.38]	2017	7			
Tarantini 2018	0	12	0	11		Not estimable	2018	8			
Yazdani 2018	0	70	0	17		Not estimable	2018	8			
Asmarats 2020	3	48	0	30	4.5%	4.69 [0.23, 94.10]	2020	0			
Liu 2020	0	174	2	174	19.8%	0.20 [0.01, 4.15]	2020	0 +			
Faroux 2021	7	190	2	95	20.4%	1.78 [0.36, 8.73]	2021	1			
Total (95% CI)		1150		578	100.0%	1.52 [0.73, 3.13]		-			
Total events	25		6								
Heterogeneity: Chi² = 1	14.92, df=	9 (P =	0.09); [2=	= 40%				0.01 0.1 1 10 100			
Test for overall effect: 2	Z = 1.12 (F	9 = 0.28	5)					0.01 0.1 1 10 100 Favours [APT] Favours [DOAC]			


Major bleeding

B. Major Bleeding

	APT DOAC			C		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Rand	dom, 95% CI	
Bosche 2015	1	27	0	18	3.6%	2.09 [0.08, 54.30]	2015		()	•	-
Wiebe 2015	4	41	2	57	10.6%	2.97 [0.52, 17.07]	2015		-		
Budts 2016	0	119	0	6		Not estimable	2016				
Kim 2016	0	35	0	61		Not estimable	2016				
Wolfrum 2016	0	150	1	19	3.6%	0.04 [0.00, 1.04]	2016	+	•	+	
Jalal 2017	1	74	0	2	3.2%	0.10 [0.00, 3.18]	2017	+	•		
Lim 2017	0	19	0	16		Not estimable	2017				
Nielsen-Kudsk 2017	4	141	0	10	4.2%	0.69 [0.03, 13.64]	2017	19			
Seidel 2017	8	50	3	62	15.0%	3.75 [0.94, 14.96]	2017				
Yazdani 2018	1	70	0	17	3.6%	0.76 [0.03, 19.35]	2018	-	-		
Liu 2020	7	174	6	174	20.2%	1.17 [0.39, 3.57]	2020		S	-	
Asmarats 2020	5	48	2	30	11.0%	1.63 [0.30, 8.98]	2020			•	
Faroux 2021	29	190	6	95	25.1%	2.67 [1.07, 6.68]	2021			-	
Total (95% CI)		1138		567	100.0%	1.58 [0.84, 2.99]				•	
Total events	60		20							100	
Heterogeneity: Tau ² = 1	0.20; Chi²	= 11.31	0, df = 9 (P = 0.2	6); F= 20	%		0.04	014	1 10	400
Test for overall effect: 2	50 - NEWSEL		82 07		31.50			0.01	0.1 Favours [APT]	1 10 Favours [DOAC]	100

Device-related thrombus

C. Device-related thrombus

All-cause mortality

D. All-cause mortality

	APT DOAC			C		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Rand	iom, 95% CI	
Seidel 2017	0	50	0	62	1111	Not estimable	2017				
Jalal 2017	2	74	0	2	7.3%	0.17 [0.01, 4.62]	2017	+	•		
Lim 2017	0	19	0	16		Not estimable	2017				
Asmarats 2020	8	48	0	30	9.1%	12.80 [0.71, 230.50]	2020		0.0	•	-
Liu 2020	16	174	14	174	41.6%	1.16 [0.55, 2.45]	2020		_		
Faroux 2021	46	190	10	95	42.0%	2.72 [1.30, 5.66]	2021				
Total (95% CI)		555		379	100.0%	1.79 [0.69, 4.65]				•	
Total events	72		24							110	
Heterogeneity: Tau2 =	0.42; Ch	$i^2 = 6.4$	5, df = 3	P = 0.0	9); I ² = 53	96		0.04	011	1 10	100
Test for overall effect:	Z=1.20	(P = 0.2)	23)					0.01	0.1 Favours [APT]	1 10 Favours [DOAC]	100

Limitation

- APT arm included patients on single and dual APT, thus the efficacy and safety of single versus dual APT is unclear.
- Comparison should be done between the three different types of LAAC devices, which includes Watchman, Amplatzer Cardiac Plug, or Amplatzer Amulet.

Conclusions

 DOACs have numerically lower rates of stroke, major bleeding, DRT, and all-cause mortality when compared to APT, but the difference did not reach statistical significance.