Rivaroxaban a bassa dose in associazione ad aspirina dopo rivascolarizzazione acuta nell'arteriopatia periferica

Risultati del trial VOYAGER PAD nei pazienti anziani

Background

- More than 235 million individuals worldwide are afflicted by PAD, and age is one of the most important risk factors.
- Despite an elevated risk for major adverse limb events (MALE) and major adverse cardiovascular events (MACE), patients with PAD are less likely to be treated with antithrombotic therapy compared with their CAD counterparts.
 - Within a nationally representative outpatient population among which 25% of patients with PAD were >80 years of age, just 38% were treated with aspirin.
- One potential reason for undertreatment, despite ACC/AHA PAD secondary prevention guidelines, is concern regarding greater bleeding liability with advanced age.
- Older PAD patients have been underrepresented in earlier antithrombotic trials, and while recent evidence suggests that low-dose rivaroxaban and aspirin is beneficial in stable PAD, the benefit—risk balance in older adults acutely after percutaneous or surgical lower extremity revascularization (LER) has not been previously studied.

Summary of clinical trials on combined anticoagulant and antiplatelet for PAD

Study	Study design	Participants	Interventions	Main findings
Johnson 2002 ⁹	Multicentre open label random- ized controlled trial	831 patients who underwent per- ipheral arterial bypass surgery	Combined warfarin plus aspirin vs. aspirin alone	No significant difference in the patency of graft except in the 6 mm bypass subgroup in which the warfarin arm
	Follow-up (mean): 36.6 months (prosthetic bypass group); 29.2 months (visio bypass	(including prosthetic and vein bypass).	Time in therapeutic range for warfarin (target INR 1.4–2.8):	had a significantly higher patency rate (P = 0.02). Higher mortality in the warfarin arm (risk ratio: 1.41, P = 0.0001)
	group)	Age (mean): ~64 years Male: 99%	patients in the warfarin arm	Major bleeding was higher in the warfarin arm (P = 0.02).
		Coronary artery disease: 24.4% Stroke: 17.3%	were off treatment by the end of patency observation.	
WAVE 2007 ¹⁰	Multicentre open label random- ized controlled trial.	2161 patients with PAD (81.8% had PAD of lower extremity)	Combined anticoagulation (war- farin/acenocoumarol) plus anti-	No significant difference between treatment arms in myo- cardial infarction, stroke, severe ischaemia, or death
	Follow-up (mean): 35 months	Age (mean): 64 years	platelet (aspirin/ticlopidine/	from cardiovascular causes.
		Male: 73.6%	clopidogrel) vs.	Life-threatening bleeding significantly higher in combination
		Coronary artery disease: 47.3%	antiplatelet alone	arm (relative risk: 3.41, P < 0.001),
		Stroke: 15.9%	Time in therapeutic range for	
			anticoagulation (target INR 2–	
			3): 62.0%	

Summary of clinical trials on combined anticoagulant and antiplatelet for PAD

Study	Study design	Participants	Interventions	Main findings
Anand 2018 (subanalysis of COMPASS trial) ⁸	Multicentre double-blind, double- dummy randomized controlled trial. Follow-up (median): 360 days	6391 patients with lower extrem- ity PAD. Age (mean): 68 years Male: 72.1% Coronary artery disease: 64.9% Stroke: not stated	Rivaroxaban (5 mg twice daily) plus aspirin placebo or rivarox- aban (2.5 mg twice daily) plus aspirin vs. aspirin alone (plus rivaroxaban placebo)	Combination treatment (rivaroxaban 2.5 mg twice daily plus aspirin) reduced incidence of MALE (HR: 0.57, $P =$ 0.01), total vascular amputation (HR: 0.42, $P = 0.01$), peripheral vascular intervention (HR: 0.76, $P = 0.03$), and all peripheral vascular outcome (HR: 0.76, $P = 0.02$) as compared with aspirin treatment arm. No difference in these outcomes observed between the rivaroxaban 5 mg twice daily plus placebo aspirin arm and aspirin arm. Major bleeding significantly increased in both rivaroxaban arms compared with aspirin arm (HR: 1.61, $P = 0.01$ and HR: 1.60, $P = 0.02$ for rivaroxaban 2.5 mg twice daily plus aspirin and 5 mg twice daily plus aspirin placebo arm, respectively).
Bonaca 2020 VOYAGER PAD trial ¹⁷	Multicentre double-blind randomized controlled trial. Follow-up (median): 28 months	6564 patients with revasculariza- tion for PAD within 10 days of recruitment Age (median): 67 years Male: 74% Coronary artery disease: 31% Stroke: not stated	Rivaroxaban (2.5 mg twice daily) plus aspirin vs. aspirin plus placebo.	 Rivaroxaban arm had significantly reduced incidence of primary efficacy outcome (acute limb ischaemia, major vascular amputation, myocardial infarction, ischaemic stroke, or card ovascular death) compared with aspirin arm (HR: 0.85, P = 0.009). Rivaroxaban arm had significantly increased major bleeding defined by ISTH (HR 1.42, P = 0.007), but not by TIMI

European Heart Journal (2021) 42, 4049-40

classification (HR 1.43, P = 0.07).

COLLEGE of

CARDIOLOGY

Rivaroxaban in Peripheral Artery Disease After Revascularization

Randomized, parallel, stratified clinical trial

Objective: To evaluate outcomes of treatment with rivaroxaban/aspirin vs. placebo/aspirin for peripheral artery disease (PAD) patients undergoing revascularization.

Conclusion: In patients with PAD who had undergone lower-extremity revascularization, rivaroxaban + aspirin was associated with a significantly lower incidence of vascular outcomes. The incidence of TIMI major bleeding did not differ significantly between the groups. The incidence of ISTH major bleeding was significantly higher with rivaroxaban and aspirin than with aspirin alone.

> Bonaca MP, Bauersachs RM, Anand SS, et al. Rivaroxaban in Peripheral Artery Disease After Revascularization. N Engl J Med 2020;Mar 28:[Epub ahead of print].

Low-dose rivaroxaban plus aspirin in older patients with peripheral artery disease undergoing acute limb revascularization: insights from the VOYAGER PAD trial

Mori J. Krantz^{1,2}*, Sebastian E. Debus D³, Judith Hsia D¹, Manesh R. Patel⁴, Sonia S. Anand⁵, Mark R. Nehler D^{1,6}, Connie N. Hess D^{1,2}, Warren H. Capell D^{1,2}, Taylor Bracken¹, Michael Szarek D^{1,7}, Lajos Mátyás⁸, Dainis K. Krievins^{9,10}, Patrice Nault D¹¹, Stefan Stefanov¹², Lloyd P. Haskell¹³, Scott D. Berkowitz D¹⁴, Eva Muehlhofer¹⁵, William R. Hiatt^{1,2}, Rupert M. Bauersachs D^{16,17}, and Marc P. Bonaca D^{1,2}

¹CPC Clinical Research, 2115 N Scranton Street, Suite 2040, Aurora, CO, USA; ²Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; ³Department of Vascular Medicine, Vascular Surgery–Angiology–Endovascular Therapy, University of Hamburg-Eppendorf, Hamburg, Germany; ⁴Duke Clinical Research Institute, Division of Cardiology, Duke University, Durham, NC, USA; ⁵Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada; ⁶Department of Surgery, Division of Vascular Surgery, University of Colorado School of Medicine, Aurora, CO, USA; ⁷SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; ⁸Borsod Central Teaching County Hospital; ⁹University of Latvia, Latvia; ¹⁰Pauls Stradins Clinical University Hospital, Vascular and Endovascular Surgery CISSSO, Gatineau, Québec, Canada; ¹¹McGill University, Canada; ¹²City Clinic Cardiology Centre Multiprofile Hospital for Active Treatment EOOD; ¹³Janssen Research and Development, Raritan, NJ, USA; ¹⁴Thrombosis & Vascular Medicine, Clinical Development, Bayer U.S, Whippany, NJ, USA; ¹⁵Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany; ¹⁶Department of Vascular Medicine, Klinikum Darmstadt, Darmstadt, Germany; and ¹⁷Center for Thrombosis and Hemostasis, University of Mainz, Mainz, Germany

Received 8 April 2021; revised 7 May 2021; editorial decision 14 June 2021; accepted 15 June 2021; online publish-ahead-of-print 25 August 2021

Methods

- The primary endpoint was a composite of acute limb ischaemia, major amputation, myocardial infarction, ischaemic stroke, or cardiovascular death.
- The principal safety outcome was thrombolysis in myocardial infarction (TIMI) major bleeding analysed by the pre-specified age cut-off of 75 years.
- Of 6564 patients randomized, 1330 (20%) were >75 years.

Baseline characteristics	Age ≤75 years (n = 5234)	Age ≥75 years (n = 1330)	P-value	
Age, median (IQR), years	64.0 (10.0)	78.0 (5)	<0.0001	
Female sex, n (%)	1180 (22.54)	524 (39.40)	<0.0001	
Race, no. (%)			<0.0001	
White	4399 (84.05)	904 (67.97)		
Black	121 (2.31)	34 (2.56)		
Asian	601 (11.48)	365 (27.44)		
Other	56 (2.14)	27 (2.06)		
Comorbidities, n (%)				
Hypertension	4160 (79.48)	1182 (88.87)	<0.0001	
Hyperlipidaemia	3153 (60.24)	786 (59.10)	0.4519	
Current/former smoker	4413 (84.31)	797 (59.92)	<0.0001	
Diabetes mellitus	2073 (39.61)	556 (41.80)	0.1496	
Chronic kidney disease ^a	774 (14.79)	553 (41.58)	<0.0001	
Coronary artery disease	1579 (30.17)	488 (36.69)	<0.0001	
Previous myocardial infarction	569 (10.87)	145 (10.90)	0.9607	
Carotid artery disease	433 (8.27)	142 (10.68)	0.0066	
Body mass index, median (IQR) kg/m ²	26.22 (5.85)	24.98 (5.72)	<0.0001	
eGFR, median (IQR) mL/min/1.73m ²	82.0 (30.0)	62.0 (26.6)	<0.0001	
Baseline medications, no. (%)				
Statin	4248 (81.16)	1001 (75.26)	<0.0001	
ACE inhibitor or ARB	3268 (62.44)	891 (66.99)	0.0022	
Clopidogrel	3093 (59.09)	826 (62.11)	0.7299	
Beta-receptor antagonists	2201 (42.05)	592 (44.51)	0.1065	
Ankle Brachial Index, median (IQR)	0.550 (0.250)	0.560 (0.230)	0.1173	
Previous amputation, n (%)	316 (6.04)	74 (5.56)	0.5589	
Index revascularization, no. (%)			<0.0001	
Endovascular	3162 (60.41)	929 (69.85)		
Hybrid	233 (4.45)	55 (4.14)		
Surgical	1839 (35.14)	346 (26.02)		
Critical limb ischaemia, n (%)	1162 (22.20)	371 (27.89)	<0.0001	
Prior limb revascularization, n (%)	2049 (39.15)	512 (38.50)	0.6824	

Primary efficacy event rate by age and treatment assignment

- Estimated probability of MACE or MALE through 3years, shown as a function of baseline age for each treatment group. Data are derived from a logistic regression model with a logit link function.
- P-interaction=0.92.
- Red line represents the risk probability for placebo and purple rivaroxaban.
- Shaded areas represent the 95% CI of the estimates.

Efficacy outcomes by age strata

No interaction for the primary endpoint

Superior benefit in reduction of acute limb ischemia in >75 yrs group

	Rivaroxaban		Placebo	Placebo		P-value	P-int.
	n (%)	KM 3 years	n (%)	KM 3 years			
Primary efficacy outcome	9						0.8314
<75 N = 5234	391 (14.96)	16.73	446 (17.02)	19.02	0.86 (0.75–0.98)	0.0265	
≥75 N = 1330	117 (17.38)	19.64	138 (21.00)	23.44	0.82 (0.64–1.05)	0.058	
Acute limb ischaemia							0.0193 ^a
<75	141 (5.40)	5.94	186 (7.10)	7.93	0.74 (0.60–0.93)	0.0076	
≥75	14 (2.08)	2.43	41 (6.24)	7.01	0.35 (0.19–0.64)	0.0004	
Major amputation							0.1724
<75	88 (3.37)	3.61	89 (3.40)	3.74	0.97 (0.73–1.31)	0.8625	
≥75	15 (2.23)	2.67	26 (3.96)	4.43	0.58 (0.31–1.10)	0.0907	
Myocardial infarction							0.2131
<75	91 (3.48)	4.05	113 (4.31)	5.04	0.80 (0.61–1.06)	0.1203	
<u>≥</u> 75	40 (5.94)	6.49	35 (5.33)	5.95	1.10 (0.70–1.74)	0.6767	
lschaemic stroke							0.6142
<75	55 (2.10)	2.52	61 (2.33)	2.81	0.91 (0.63–1.31)	0.5991	
<u>></u> 75	16 (2.38)	3.44	21 (3.20)	3.84	0.74 (0.38–1.42)	0.3605	
Cardiovascular death							0.8656
<75	134 (5.13)	6.09	116 (4.43)	5.48	1.15 (0.90–1.48)	0.2548	
<u>≥</u> 75	65 (9.66)	10.92	58 (8.83)	10.32	1.11 (0.77–1.58)	0.5798	

Efficacy outcomes by age strata

No interaction for the secondary endpoint

	Rivaroxaban	Rivaroxaban		Placebo		P-value	P-int.
	n (%)	KM 3 years	n (%)	KM 3 years			
Secondary outcom	nes						
Acute limb ischa	aemia, major amputation	, MI, ischaemic strok	e, or CHD death				
<75	339 (12.97)	14.43	405 (15.45)	17.44	0.82 (0.71–0.95)	0.0068	
≥75	94 (13.97)	15.63	123 (18.72)	21.24	0.74 (0.57–0.97)	0.0310	0.5825
Unplanned inde	x limb revascularization	for recurrent limb is	chaemia				
<75	479 (18.33)	20.58	544 (20.76)	23.30	0.87 (0.77–0.99)	0.0301	
<u>≥</u> 75	105 (15.60)	17.73	111 (16.89)	19.31	0.93 (0.71–1.22)	0.6007	0.6736
Hospitalization f	for a thrombotic corona	ry or peripheral eve	nt				
<75	218 (8.34)	9.10	288 (10.99)	12.21	0.74 (0.62–0.88)	0.0008	
<u>≥</u> 75	44 (6.54)	7.01	68 (10.35)	11.48	0.64 (0.44–0.94)	0.0211	0.5089
Acute limb ischa	aemia, major amputation	, MI, ischaemic strok	e, or all-cause mor	tality			
<75	465 (17.80)	19.55	512 (19.53)	21.74	0.89 (0.78–1.01)	0.0624	
<u>≥</u> 75	149 (22.14)	24.85	167 (25.42)	29.06	0.86 (0.69–1.08)	0.1892	0.8953
All-cause morta	lity						
<75	221 (8.46)	9.64	198 (7.55)	9.18	1.12 (0.92–1.35)	0.2652	
<u>≥</u> 75	100 (14.86)	16.66	99 (15.07)	17.88	0.99 (0.75–1.31)	0.9617	0.5379
Venous thromb	o-embolism						
<75	18 (0.69)	0.75	29 (1.11)	1.52	0.63 (0.35–1.13)	0.1163	
<u>></u> 75	7 (1.04)	0.88	12 (1.83)	2.26	0.63 (0.25-1.59)	0.3214	0.8910

Primary efficacy outcome by age and treatment

The Kaplan–Meier cumulative incidence rates over 3 years in patients >75 years (left panel) and in those <75 years (right panel) stratified by treatment allocation (red = placebo, purple = rivaroxaban) were consistent (P-value for interaction = 0.83).

Safety outcomes by age strata

No interaction for the safety endpoint

	Rivaroxaban		Placebo		HR (95% CI)	P-value	P-int.
	n (%)	KM 3 years	n (%)	KM 3 years			
TIMI major bleeding							0.3807
<75 N = 5193	46 (1.77)	2.31	29 (1.12)	1.50	1.60 (1.01, 2.55)	0.0444	
≥75 N = 1311	16 (2.42)	4.31	15 (2.31)	3.50	1.11 (0.55, 2.26)	0.7632	
Fatal bleeding							
<75	6 (0.23)	0.26	5 (0.19)	0.23	1.21 (0.37, 3.98)	_	
≥75	0 (0.00)	0.00	1 (0.15)	0.16	_	_	
Intracranial haemorrhage							_
<75	11 (0.42)	0.62	10 (0.38)	0.61	1.13 (0.48, 2.67)	_	
≥75	2 (0.30)	0.54	7 (1.08)	2.26	0.29 (0.06, 1.38)	_	
Fatal bleeding or intracra	nial haemorrhage						0.0536
<75	15 (0.58)	0.79	11 (0.42)	0.65	1.40 (0.64, 3.04)	0.3994	
≥75	2 (0.30)	0.54	8 (1.23)	2.41	0.25 (0.05, 1.20)	0.0616	
Secondary bleeding outcom	les						
TIMI minor							0.1632
<75	34 (1.31)	1.54	18 (0.69)	0.91	1.90 (1.07, 3.36)	0.0252	
≥75	12 (1.82)	3.82	13 (2.00)	2.25	0.93 (0.43, 2.05)	0.8653	
BARC 3b and above							0.1614
<75	72 (2.77)	3.56	49 (1.89)	2.45	1.49 (1.04, 2.14)	0.0299	
≥75	21 (3.18)	5.35	24 (3.69)	4.95	0.92 (0.51, 1.65)	0.7773	
ISTH major							0.4387
<75	102 (3.93)	5.10	68 (2.62)	3.42	1.52 (1.12, 2.07)	0.0068	
≥75	38 (5.75)	9.94	32 (4.92)	6.83	1.22 (0.76, 1.96)	0.4016	

Ischaemic events prevented vs. bleeding caused by rivaroxaban in patients >75 years

Primary efficacy outcomes prevented with rivaroxaban vs. placebo (green bar) using the intention-to-treat (ITT) absolute risk difference at 3 years vs. the principal safety outcomes caused with rivaroxaban (red) bar using on-treatment absolute risk difference at 3 years in patients >75 years.

Events Prevented versus Caused for 1000 Patients ≥ 75 years old Over 3 years

Limitations

- No statistically significant reduction in all-cause or cardiovascular mortality, given limited patient numbers and a median follow-up of 28 months.
- Comparative results with the COMPASS trial although remarkably consistent are limited by an incomplete understanding of the anatomic and physiologic differences in elderly vascular disease patients that are stable vs. those more acutely requiring revascularization.
- Although power to demonstrate statistical significance with a P-value <0.05 is generally limited in any subgroup analysis of a trial, the current analysis included over 250 primary outcome events in over 1300 patients in the subgroup of interest (>75) and showed no evidence of heterogeneity for treatment by age (Pinteraction 0.83).

Impact of combination therapy for older PAD patients after limb revascularization

PF

