

CSL 112 (Apolipoprotein A-I) Infusions and Cardiovascular Outcomes in Patients With Acute Myocardial Infarction (ApoA-I Event Reducin G in Ischemic Syndromes II (AEGIS-II) Trial)

C. Michael Gibson, M.S., M.D.; Danielle Duffy, M.D.; Gerald Chi, M.D.; Serge Korjian, M.D.; M. Cecilia Bahit, M.D.; John H. Alexander, M.D., M.H.S.; A. Michael Lincoff, M.D.; Mark Heise, Ph.D.; Pierluigi Tricoci, M.D., Ph.D., M.H.S.; Jose C. Nicolau, M.D., PhD; Renato Lopes, M.D.; Bela Merkely, M.D.; Basil S. Lewis, M.D.; Jan H. Cornel, M.D.; Jaroslaw Trebacz, M.D.; Alexander Parkhomenko, M.D.; Peter Libby, M.D.; Frank Sacks, M.D. ; Thomas J. Povsic, M.D. Ph.D.; Lawrence I. Deckelbaum, M.D.; Jenny Mears; Marc Bonaca, M.D.; Shaun G. Goodman, M.D., M.S.c.; Deepak L. Bhatt, M.D., M.P.H.; Michal Tendera, M.D.; P. Gabriel Steg, M.D.; Paul Ridker, M.D.; Philip Aylward, M.D.; John Kastelein, M.D.; Christophe Bode, M.D.; Kenneth W. Mahaffey, M.D; Stephen J. Nicholls, M.B.B.S., Ph.D..; Stuart Pocock, Ph.D.; Roxana Mehran, M.D.; Robert Harrington, M.D.

On Behalf of the AEGIS-II Committees and Investigators

Disclosures

Present Research/Grant Funding

Consultant

Janssen/Johnson & Johnson CSL Behring

SCAD Alliance

Baim Institute

Patents and Stocks : None

Equity :

nference, Inc.

Dyad Medical

Absolutys

Fortress Biotech

FlowTherapy

Angel/Avertix Medical AstraZeneca Bayer **Beren** Therapeutics **Boehringer Ingelheim Boston Clinical Research** Institute Bristol-Myers Squibb Cardiovascular Research Foundation **CeleCor Therapeutics** Esperion EXCITE International (\$0 Received) Fortress Biotech Janssen/ J&J MashUp MD

MD Magazine Microport Novartis NovoNordisk Pfizer PLxPharma Smart Medics Solstic Health/New Amsterdam Pharma Somahlution/Marizyme Vectura WedMD Woman As One Spouse: Employee of Boston Clinical Research Institute, has equity

Angel/Avertix Medical AstraZeneca Bayer/Janssen/ J&J **Beren** Therapeutics Bioclinica **Boehringer Ingelheim Boston Clinical Research Institute Boston Scientific Bristol-Myers Squibb** Cardiovascular Research Foundation **CeleCor Therapeutics CSL** Behring DCRI Esperion EXCITE International (\$0 Received) Fortress Biotech

Gilead Sciences, Inc. Inari MashUp MD MD Magazine Merck Microport MjHealth Novartis NovoNordisk PERT Consortium Pfizer PhaseBio PHRI **PL**xPharma **Revance Therapeutics** Samsung SFJ **SCAI** Solstic Health/New Amsterdam Pharma Somahlution/Marizyme Vectura Woman As One

EGIS-II

- The main role of HDL-C is to carry cholesterol from cells to the liver, where hepatocytes degrade cholesterol for excretion via bile
- Higher HDL-C associated with lower events, but therapies that raise HDL-C numbers have not reduced events
- We hypothesized that improving HDL function by infusing human ApoA-1 , the primary functional component of HDL, would **improve outcomes**

Macrophages with radioactive cholesterol are added to the patient's blood and the amount of radioactive cholesterol taken up by the HDL is measured

Macrophage With Radioactive Cholesterol

HDL From Patients Blood

HDL

EGIS-II Improved Cholesterol Efflux Capacity (CEC) Is Associated With Improved 6 Year Survival Following MI

In Phase II trials, CSL112 produced a dramatic, dose-dependent increase in apoA-I levels and cholesterol efflux

Histology Data from Human Femoral Arteries:

ApoA-I Infusion Reduces Macrophage & Fat Content in Plaque

A single infusion of ApoA-I (CSL111) reduced femoral plaque by >50% in 5–7 days

Hypothesis of the AEGIS 2 Trial

Prior Observations:

- CSL 112 ApoA-1 infusions improved cholesterol efflux in the setting of MI and reduced fat and macrophage content in atherosclerotic plaque
- Improved cholesterol efflux is associated with improved CV outcomes in the setting of MI

Hypothesis:

• CSL 112 infusion will improve CV outcomes in the setting of MI

\bigcirc EGIS-II ApoA-1 Event Reducin G in Ischemic Syndromes II \square

A phase 3, multicenter, double-blind, randomized, placebo-controlled, event-driven, parallel-group study

Trial Leadership

Executive Committee:

C. Michael Gibson, MS, MD (Chairman); Robert A. Harrington, MD, (Co-Chairman)

John Alexander, MD, MHS; Philip A. Aylward, BM, BCh, PhD; Deepak Bhatt, MD, MPH; Christoph Bode, MD; Shaun Goodman, MD, MS c; John Kastelein, MD, PhD; Kenneth Mahaffey, MD; A. Michael Lincoff, MD; Roxana Mehran, MD; Stephen J. Nicholls, MBBS, PhD;

National Lead Investigators

18,226 participants at 886 sites in 49 countries

were randomized between March 2018 and November 2022

(Argentina) Cecilia Bahit, MD; (Australia) Gemma Figtree, MB BS, DPHIL (OXON), FRACP, FCSANZ, FAHA; (Austria) Kurt Huber, MD, FESC, FACC, FAHA; (Belgium) Pascal Vranckx, MD; (Brazil) Renato Lopes, MD, MHS, PhD; (Brazil) Jose Carlos Nicolau, MD, PhD; (Bulgaria) Nina Gotcheva, MD, PhD; (Canada) Kevin Bainey, MD, MSc; (Chile) Juan Carlos Prieto, MD; (Colombia) Miguel Urina Triana, MD, MSc, PhD, FACC; (Czech Republic) Miroslav Solar, MD; (Denmark) Svend Eggert Jensen, MD, PhD, FESC; (Denmark) Morten Bøttcher, MD PhD; (Estonia) Margus Viigimaa, MD, PhD, FESC; (Finland) Mika Laine, MD; (France) Gilles Montalescot, MD, PhD; (Georgia) Tamaz Shaburishvili; (Germany) Daniel Duerschmied, MD; (Greece) Dimistris Tousoulis, MD; (Hong Kong) Michael Lee, MD; (Hungary) Bela Merkely, MD, PhD; (Israel) Basil Lewis, MD; (Italy) Giuseppe Ambrosio, MD, PhD; (Japan) Satoshi Yasuda, MD; (Latvia) Andrejs Erglis, MD; (Lithuania) Rimvydas Slapikas, MD, PhD; (Malaysia) Alan Fong, MD; (Mexico) Jose Luis Leiva Pons, MD;

(Netherlands) Jan H. Cornel, MD; (New Zealand) Harvey White, MD; (Norway) Vibeke Juliebø, MD; (Peru) Manuel Horna, MD, FACC, FASE, FESC; (Poland) Jaroslaw Trebacz, MD; (Portugal) João Morais, MD; (Romania) Dragos Vinereanu, MD; (Russia) Sergey Zenin, MD; (Serbia) Nebojsa Tasic, MD; (Singapore) Jack Tan, MD; (Slovakia) Jan Murin, MD, PhD; (South Africa) Lesley Burgess, MD; (South Korea) Hyun Jae Kang, MD; (Spain) Angel Cequier Fillat, MD; (Sweden) Emil Hagström, MD; (Switzerland) Stephan Windecker, MD; (Taiwan) Jiunn-Lee Lin, MD; (Thailand) Piyamitr Sritara, MD, PhD; (Turkey) Umit Guray, MD; (United Kingdom) Vijay Kunadian, MD; (Ukraine) Alexandr Parkhomenko, MD; (United States) Marc Bonaca, MD, MPH, Thomas Povsic, MD.

We would like to thank **Dr. Anthony Gershlick**, the country leader of the United Kingdom, and **Dr. Amadeu Betriu**, the country leader of Spain for their enormous contribution to the study prior to their untimely deaths. We miss them as friends and colleagues.

Baseline Characteristics

Type of index MI - no. (%)	CSL 112	Placebo
STEMI	4606 (50.5)	4600 (50.5)
NSTEMI	4506 (49.5)	4507 (49.5)
PCI performed for index MI – no. (%)	8037 (88.2)	7997 (87.8)
Medications at time of Randomization – no. (%)		
Aspirin	8489 (93.2)	8473 (93.0)
P2Y12 inhibitor or other anti-platelet agent	8508 (93.4)	8490 (93.2)
HMG CoA reductase inhibitor (statin)	8429 (92.5)	8424 (92.5)
High intensity statin therapy^^	6871 (75.4)	6890 (75.7)
Median lipid level (IQR) – mg/dL**		
Total Cholesterol	160 (133-192)	159 (133-190)
LDL Cholesterol	84 (61-112)	84 (62-111)
HDL Cholesterol	39 (33-46)	39 (33-47)
Triglycerides	156 (117-212)	153 (117-208)

Trial Compliance and Follow Up

90% of subjects completed all 4 infusions

99.5% of subjects completed 90 days of follow-up

99% completed 365 days of follow-up

1 patient lost to follow up in each group

Primary Endpoint

Time to First Occurrence of CV Death, MI or Stroke

Cumulative event rates using the Kaplan-Meier method were calculated for the primary efficacy endpoint and other time to event endpoints. A covariate-adjusted Cox regression model including fixed effects for treatment, region, index MI type, index MI management, age, diabetes, peripheral arterial disease, prior MI, and an interaction term for index MI type and index MI management was fitted to estimate the hazard ratio and two-sided 95% confidence interval

ACC 2024

Other Key Pre-Specified Secondary Endpoints

			Hazard Ratio or Rate
	CSL112	Placebo	Ratio
End Point	(N = 9112)	(N = 9107)	(95% CI)
Key Secondary Efficacy Endpoints			
Hospitalizations for coronary, cerebral, or peripheral			
ischemia per 90 days of follow-up – no.	433 (0.045)	442 (0.047)	0.97 (0.84–1.12)
hospitalizations, mean rate*			
Other Secondary Efficacy End Points and			
Components of the Composite Endpoint			
All-cause death at 365 days — no. (%)	341 (3.8)	345 (3.8)	0.98 (0.84–1.14)
CV death through 180 days — no. (%)	150 (1.7)	169 (1.9)	0.88 (0.71–1.10)
CV death through 365 days — no. (%)	230 (2.6)	242 (2.7)	0.94 (0.79–1.13)
MI through 180 days — no. (%)	450 (5.0)	513 (5.7)	0.87 (0.77–0.99)
MI through 365 days—no. (%)	638 (7.2)	705 (7.9)	0.90 (0.81–1.00)
Stroke through 180 days — no. (%)	81 (0.9)	71 (0.8)	1.13 (0.82–1.56)
Stroke through 365 days — no. (%)	115 (1.3)	109 (1.2)	1.05 (0.89–1.36)

Myocardial Infarction Event Rates by MI Type

Secondary Endpoint; All Patients Included

EGIS-II

Safety Findings

- Overall, there were similar rates of adverse events with CSL112 compared to placebo.
- There were no imbalances in all hypersensitivity events (serious and non-serious). The number of immune system disorder events (e.g. hypersensitivity or anaphylactoid reactions) leading to discontinuation from investigational product were low but were higher in the CSL112 group compared with the placebo group (14 vs 4 events, p=0.02).
- There were less acute kidney injury events in the CSL112 arm (defined by changes in creatinine through the active treatment period): 570 (6.3%) vs 650 (7.2%)(p=0.02).
- There were no **significant** imbalances in potential hepatic injury events (defined as ALT >3x ULN with Tbili >2x ULN or ALT >5x ULN), or new or worsening heart failure events (based on adjudication)

Primary Endpoint Subgroups

Subgroup Age	CSL112	Placebo
>=65 years old	284/5418 (5.2%)	318/5341 (6.0%)
<65 years old	155/3694 (4.2%)	154/3766 (4.1%)
Sex		
Male	314/6786 (4.6%)	333/6721 (5.0%)
Female	125/2326 (5.4%)	139/2386 (5.8%)
Race		
White	368/7769 (4.7%)	385/7698 (5.0%)
Black/African-American	10/181 (5.5%)	12/181 (6.6%)
Asian	37/743 (5.0%)	42/781 (5.4%)
Other	23/373 (6.2%)	29/402 (7.2%)
Not reported	1/46 (2.2%)	4/45 (8.9%)
Ethnicity		
Hispanic	75/1566 (4.8%)	97/1596 (6.1%)
Non-Hispanic	360/7410 (4.9%)	370/7383 (5.0%)
Not reported	3/132 (2.3%)	5/123 (4.1%)
Region [1]		
Central and Eastern Europe	107/3134 (3.4%)	130/3136 (4.1%)
Western Europe	135/2459 (5.5%)	128/2455 (5.2%)
Latin America	73/1456 (5.0%)	88/1453 (6.1%)
North America	77/1178 (6.5%)	73/1175 (6.2%)
Asia Pacific	47/885 (5.3%)	53/888 (6.0%)

Secondary and Exploratory Hypothesis Generating Analyses

\bigcirc EGIS-IIPrimary MACE Endpoint Lower In Patients With
Baseline Hyperlipidemia (LDL-C \geq 100, All On Statins)

Slide by C. Michael Gibson, M.S., M.D.

PERFUSE

Patients with Baseline Hyperlipidemia (LDL-C \geq 100, All on Statins)

Conclusions

- Among AMI patients with multivessel disease and additional cardiovascular risk factors on guideline directed background therapies, 4 weekly infusions of CSL112 compared with placebo did not significantly reduce the primary endpoint of CV death, MI or stroke through 90 days.
- There was consistency in the primary endpoint in prespecified subgroups.
- The drug was well tolerated.

Conclusions: Secondary & Exploratory Hypothesis Generating Endpoints

- As the baseline LDL-C increased, the potential treatment effect of ApoA-1 infusion increased significantly when analyzed as a continuous variable
- There was a positive interaction term such that the treatment effect in those patients with an LDL-C $\geq 100 \text{ mg} / \text{dl}$ was statistically significant while it was not in those with an LDL < 100 mg/dl
- The benefit on ApoA-1 infusions in hyperlipidemic patients is biologically plausible, but the observation is hypothesis generating and requires prospective validation.
- The trends seen for the individual components of CV death and MI are consistent with the a priori proposed biologic effect of plaque stabilization.

Back Up Slides

Differentiating CSL112 from other ApoA-I Infusion Therapies

CSL112 results in much larger increases in ApoA-I, cholesterol efflux and ABCA1-dependent cholesterol efflux than other ApoA-I therapies and activates LCAT

	CSL112 (6 g)	CER-001 (3 mg/kg)	MDCO-216 (20 mg/kg)
ApoA-I levels	Increase *1	Increase ^{†2}	Hypercatabolism ^{‡3}
Total Cholesterol efflux	Increase *1	Increase ^{†2}	Not available ³
ABCA1-dependent cholesterol efflux	Increase *1	No change ^{†2}	Not available ^{3,4}
LCAT	Activated ⁵	Inhibited 6-8	Inhibited 9,10

Data not from head-to-head studies

ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; LCAT, lecithin-cholesterol acyltransferase; RCT, reverse cholesterol transport

Measured before and immediately after 2-hour infusion; [†]Measured before and 1 hour after infusion; [‡]Timing of measurement not reported; [®]Data not available for MILANO-PILOT; however, limited data at the 20 mg/kg dose from Phase 1 suggests an increase in ABCA1-dependent efflux.

 1. Gibson CM, et al. Circulation 2016;134:1918–30; 2. Zheng KH, et al. Atherosclerosis 2016;251:381–8; 3. Nicholls SJ. Oral presentation at AHA, November 2016; 4. Kallend DG, et al. Euro Heart J Cardiovasc Pharmaco 2016;2:23–9;

 5.; 5. Diditchenko S, et al. Arterioscler Thromb Vasc Biol. 2013;33:2202–11; 6. Tardy C, et al. Atherosclerosis 2014;232:110–118;
 7. Boerema DJ, et al. Poster presentation at ATVB, May 2014; 8. Bolin DJ, et al. J Biol Chem. 1996;

 271:19152–19158; 9. Calabresi L, et al. Biochem Biophys Res Commun. 1997; 232:345-349; 10. Kempen HJ, et al. Atherosclerosis 2016;255:17-24
 7. Boerema DJ, et al. Poster presentation at ATVB, May 2014; 8. Bolin DJ, et al. J Biol Chem. 1996;

