

Coronary Computed Tomography Angiography and the Future Risk of Myocardial Infarction

5-Year Follow-up of the SCOT-HEART Trial on behalf of the SCOT-HEART Investigators

Scottish COmputed Tomography of the HEART (SCOT-HEART) Trial

To assess the clinical impact of the **addition** of CTCA in patients presenting with suspected angina due to coronary heart disease in the Cardiology clinic

Diagnosis (Primary Endpoint)

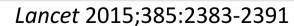
Trials. 2012;13:184

Investigations

Treatments

Outcomes

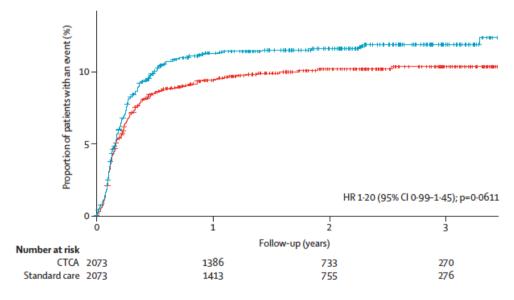
Changed Diagnosis in 1 in 4


Changed Investigations in 1 in 6

Changed Treatments in 1 in 4

Pre-specified 5-year outcome:

CHD death or non-fatal myocardial infarction



Short-term Effects of CTCA

Invasive Coronary Angiography and Coronary Revascularisation

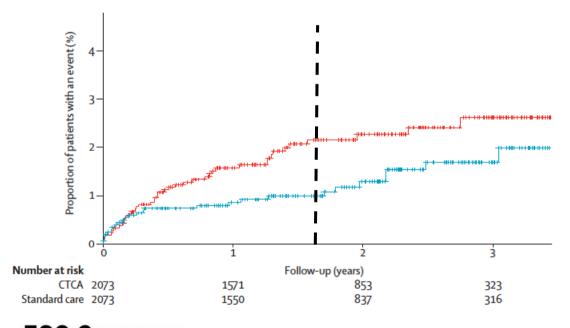
Coronary Revascularisation HR 1.20 (95% CI, 0.99-1.45), P=0.0611

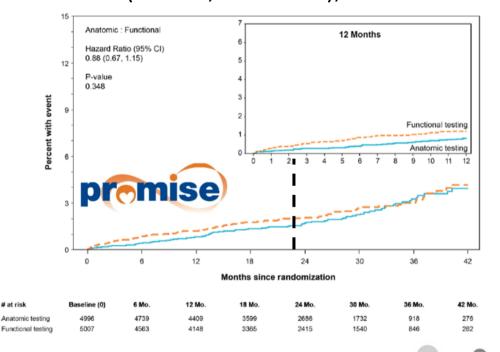
At 90 days:

Invasive cardiac catheterisation 8.1 *versus* 12.2% (P<0.001)

Coronary Revascularisation 3.2 *versus* 6.2% (P<0.001)

Lancet 2015;385:2383-2391


N Engl J Med 2015;372:1291-1300


Short-term Effects of CTCADeath and Myocardial Infarction at 20-22 Months

CHD death or non-fatal myocardial infarction HR 0.62 (95% CI, 0.38-1.01), P=0.053

Death or non-fatal myocardial infarction HR 0.66 (95% CI, 0.44-1.00), P=0.049

ESC Congress Munich 2018

Lancet 2015;385:2383-2391

N Engl J Med 2015;372:1291-1300

Scottish COmputed Tomography of the HEART (SCOT-HEART) Trial The 5-Year Data

Pre-specified 5-year assessment of Coronary CT Angiography on:

- Coronary heart disease death or non-fatal myocardial infarction
- Invasive coronary angiography and coronary revascularisation
- Prescription of preventative therapies

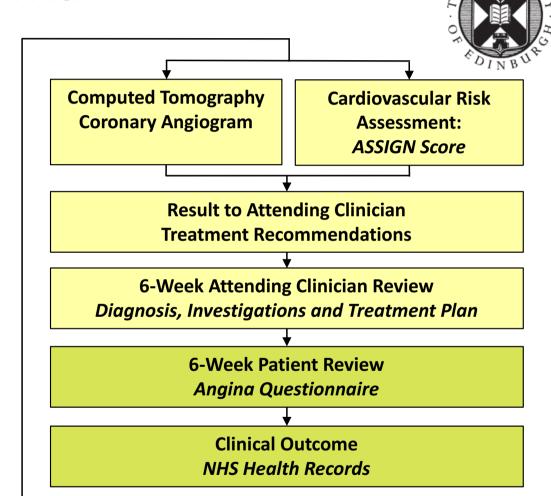
The SCOT-HEART Trial

Study Protocol

Primary Care Physician Referral

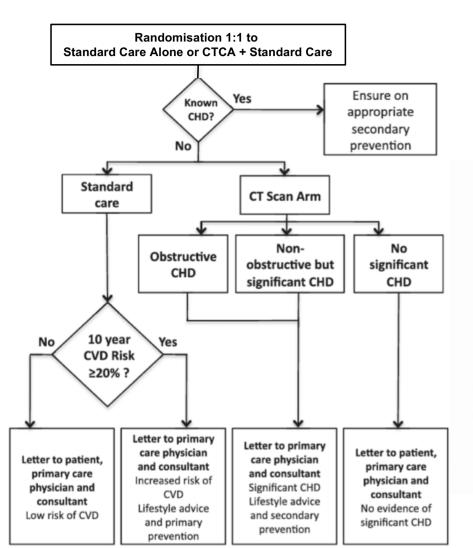
Clinic Consultation

History, Examination, 12-lead ECG


Exercise ECG if appropriate

Diagnosis, Investigations and Treatment Plan

Approached for Study Inclusion


Angina Questionnaire

Randomised 1:1 to
CTCA + Standard Care or
Standard Care alone

Healthy Living

The SCOT-HEART Trial

Recruiting and Imaging Centres

Complete Health Record Data Capture

Royal Alexandra Hospital,
Paisley
Western Infirmary, Glasgow
Glasgow Royal Infirmary, Glasgow
University Hospital, Ayr

12 Centers Across Scotland

Perth Royal Infirmary, Perth

Ninewells, Dundee

Victoria Hospital, Kirkcaldy

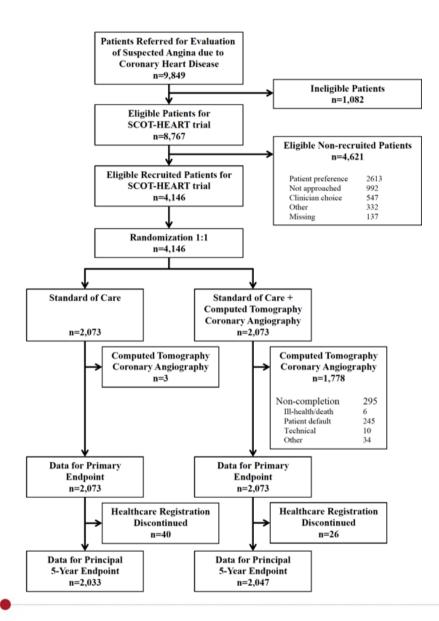
Forth Valley Hospital, Larbert

Western General Hospital, Edinburgh Royal Infirmary, Edinburgh

St John's Hospital, Livingston

Borders General Hospital, Melrose

ESC Congress Munich 2018


Trials. 2012;13:184

Lancet 2015;385:2383-2391

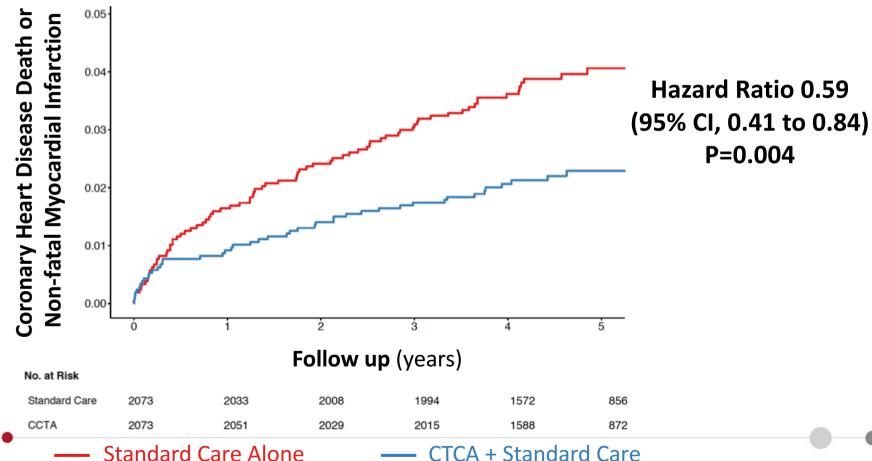
o 320

JACC 2016;67:1759-1768

- 4,080 of 4,146 (98.4%) patients remained registered in Scotland.
- No patient withdrew consent
- Complete data over a median of 4.8 years comprising 20,254 patient-years of follow-up

	All Participants	Standard Care + CTCA	Standard Care
Number	4146 (100%)	2073 (50%)	2073 (50%)
Male	2325 (56%)	1162 (56%)	1163 (56%)
Age (years)	57±10	57±10	57±10
Body-mass Index (kg/m²)	30±6	30±6	30±6
Atrial Fibrillation	84 (2%)	42 (2%)	42 (2%)
Prior Coronary Heart Disease	372 (9%)	186 (9%)	186 (9%)
Prior Cerebrovascular Disease	139 (3%)	91 (4%)	48 (2%)
Prior Peripheral Vascular Disease	53 (1%)	36 (2%)	17 (1%)
Current or Ex-smoker	2185 (53%)	1095 (53%)	1090 (53%)
Hypertension	1395 (34%)	712 (34%)	683 (33%)
Diabetes Mellitus	444 (11%)	223 (11%)	221 (11%)
Hypercholesterolaemia	2176 (53%)	1099 (53%)	1077 (52%)
Family History	1716 (41%)	887 (43%)	829 (40%)
Serum Total Cholesterol (mmol/L)	5.41±1.20	5.41±1.23	5.41±1.17
Serum HDL-Cholesterol (mmol/L)	1.35±0.43	1.35±0.42	1.35±0.43

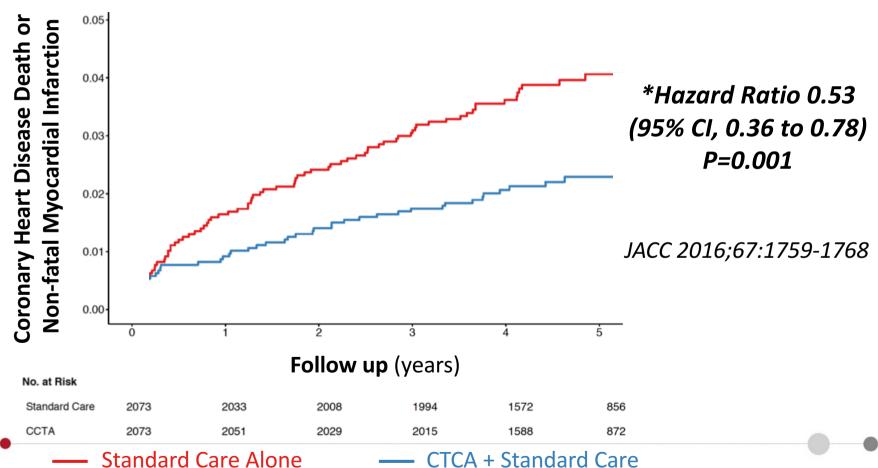
		All Participants	Standard Care + CTCA	Standard Care
Anginal Symptoms	Typical	1462 (35%)	737 (36%)	725 (35%)
	Atypical	988 (24%)	502 (24%)	486 (23%)
	Non-anginal	1692 (41%)	833 (40%)	859 (41%)
Electrocardiogram	Normal	3492 (84%)	1757 (85%)	1735 (84%)
	Abnormal	608 (15%)	292 (14%)	316 (15%)
Stress Electrocardiogram				
	Performed	3517 (85%)	1764 (85%)	1753 (85%)
	Normal	2188 (62%)	1103 (63%)	1085 (62%)
	Inconclusive	566 (16%)	284 (16%)	282 (16%)
	Abnormal	529 (15%)	264 (15%)	265 (15%)
Further Investigation		1315 (32%)	633 (31%)	682 (33%)
Stress Imaging	Radionuclide	389 (9%)	176 (9%)	213 (10%)
	Other	30 (1%)	16 (1%)	14 (1%)
Invasive Coronary Angiography		515 (12%)	255 (12%)	260 (13%)
Predicted 10-year CHD Risk		17±12%	18±11%	17±12%



ESC Congress

Munich 2018

Primary Clinical End Point



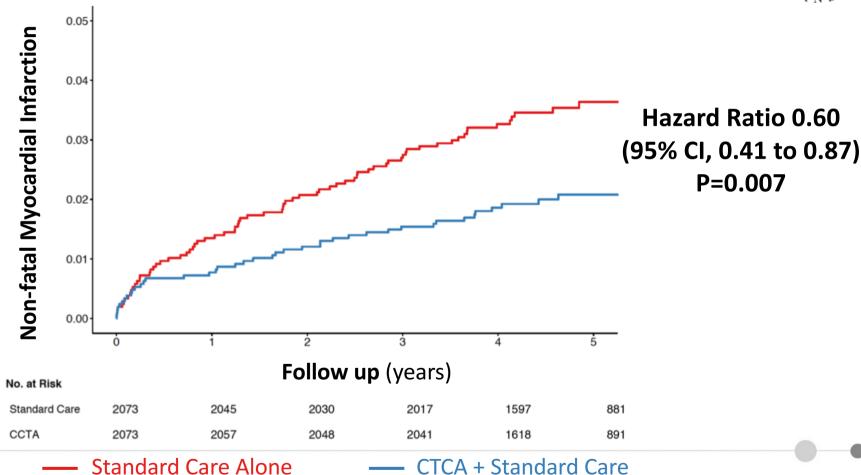
Primary Clinical End Point

Excluding the 50-day treatment delay

Primary Clinical End Point

Subgroups of Interest

		No. of patients	CCTA	Standard Care		Value for nteraction
AII		4146	48/2073 (2.3)	81/2073 (3.9)	0.59 0.41, 0.84	
Age					į	
	<65 years	3092	32/1538 (2.1)	51/1554 (3.3)	0.62 0.40, 0.96	0.676
	≥65 years	1054	16/535 (3.0)	30/519 (5.8)	0.53 0.29, 0.98	
Sex						
	Female	1821	11/911 (1.2)	22/910 (2.4)	0.50 0.24, 1.04	0.572
	Male	2325	37/1162 (3.2)	59/1163 (5.1)	0.63 0.42, 0.95	
10-ye	ar Cardiovascular F	Risk*			İ	
	<15	2036	15/969 (1.5)	21/1067 (2.0)	0.78 0.40, 1.51	0.213
	≥15	2110	33/1104 (3.0)	60/1006 (6.0)	0.50 0.33, 0.77	
NICE	Classification					
	Non-anginal	1447	8/712 (1.1)	18/735 (2.4)	0.45 0.19, 1.03	0.578
	Possible angina	2323	27/1174 (2.3)	44/1149 (3.8)	0.60 0.37, 0.96	
Prior	СНД				į	
	No	3774	35/1887 (1.9)	62/1887 (3.3)	0.57 0.37, 0.86	0.679
	Yes	376	13/187 (7.0)	19/189 (10.1)	0.65 0.32, 1.32	
Diabe	tes					
	No	3702	41/1850 (2.2)	64/1852 (3.5)	0.63 0.43, 0.94	0.400
	Yes	444	7/223 (3.1)	17/221 (7.7)	0.36 0.15, 0.87	
					0.1 1.0 1.6	



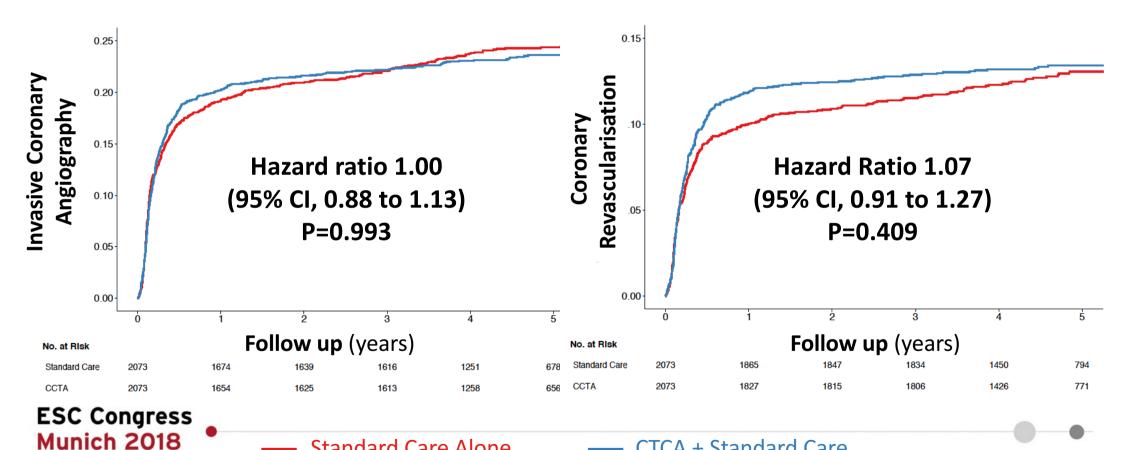
ESC Congress

Munich 2018

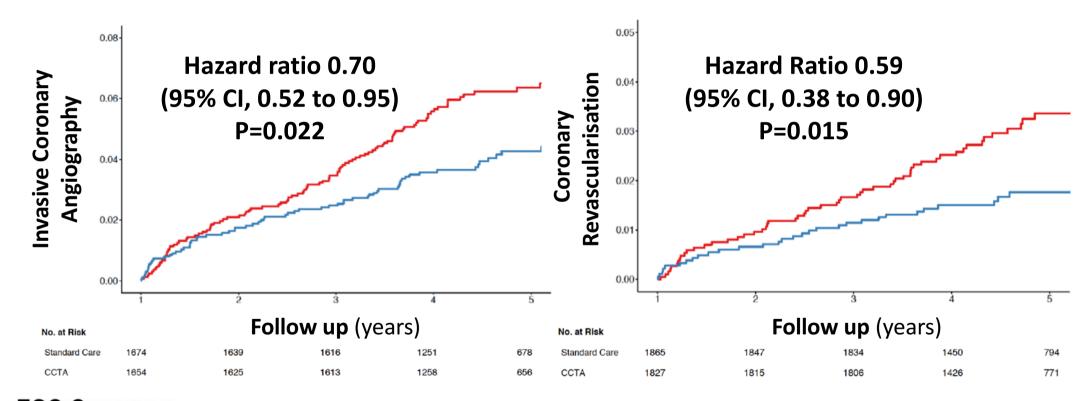
Non-fatal Myocardial Infarction

Mortality

Cardiovascular and Non-cardiovascular

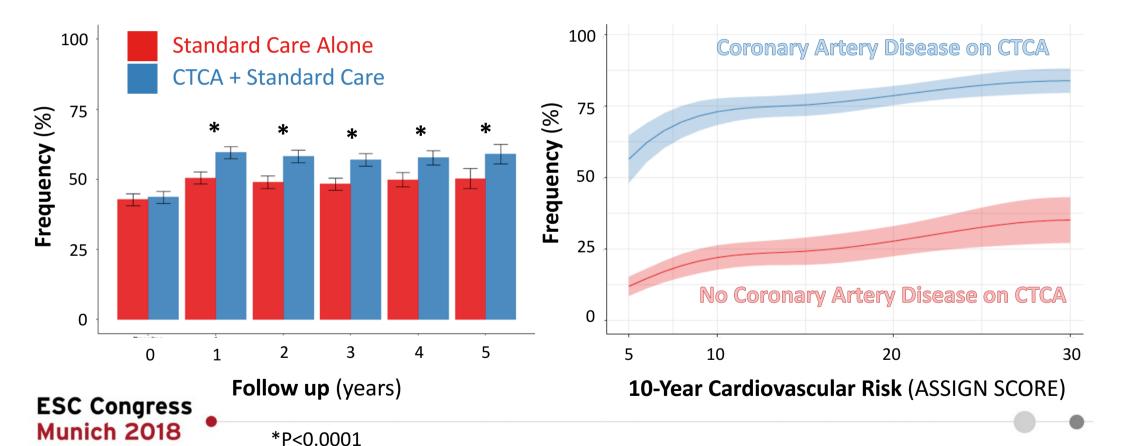

Cause of Death	All Participants	CCTA	Standard Care	Hazard R	atio (95%	CI)	P Value
Coronary Heart Disease	13 (0.3)	4 (0.2)	9 (0.4)		0.46	(0.14, 1.48)	0.193
Cardiovascular	17 (0.4)	5 (0.2)	12 (0.6)		0.43	(0.15, 1.22)	0.111
Non-cardiovascular	69 (1.7)	38 (1.8)	31 (1.5)		1.24	(0.77, 2.00)	0.368
All-cause	86 (2.1)	43 (2.1)	43 (2.1)	_	1.02	(0.67, 1.55)	0.936
			0.1	1.0	2.0		

Invasive Coronary Angiography and Coronary Revascularisation


Standard Care Alone

CTCA + Standard Care

Invasive Coronary Angiography and Coronary Revascularisation Beyond One-Year (Post-hoc Analysis)


Standard Care Alone

— CTCA + Standard Care

Statin Therapy Use over 5 Years The Right Patient Gets the Right Treatment

Coronary CT Angiography and the Future Risk of Myocardial Infarction

The Right Patient Gets the Right Treatment

- Coronary CT angiography leads to a reduction in 5-year coronary heart disease death or non-fatal myocardial infarction
- Early increases in invasive coronary angiography and coronary revascularisation are offset by lower rates beyond 1 year
- Benefits appear to be attributable to better targeted preventative therapies that persist out to 5 years
- Should coronary CT angiography be the non-invasive test of choice?